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ABSTRACT

A combinatorial form of Gram’s relation for convex polytopes can be

adapted for use in computing polytope volume. We present an algorithm for

volume computation based on this observation. This algorithm is useful in

finding the volume of a polytope given as the solution set of a system of

linear inequalities, P = {x€lR^: Ax:£b}.

As an illustration we compute a formula for the volume of a projective

image of the n-cube. From this formula we deduce that, when A and b have

rational entries (so that the volume of P is also a rational number), the

number of binary digits in the denominator of the volume cannot be bounded by

a polynomial in the total number of digits in the numerators and denominators

of entries of A and b. This settles a question posed by Dyer and Frieze.
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1 . Introduction . We present a method for computing exactly the volume

of a convex polytope given as the set of solutions of a finite system of

linear inequalities.

Some methods for exact computation of the volume of a convex polytope P

in are given in [1], [5], [13], and [30]. In Cohen and Hickey [5] and Von

Hohenbalken [30], the volume is obtained by triangulating the polytopeand

summing the volumes of the simplexes of the triangulation. (Cohen and Hickey

[5] compares this method with an approximate method. ) In Allgower andSchmidt

[1] the volume is computed from a triangulation of the boundary of P.Lasserre

[13] presents a method based on the recursive use of a well-knownformula for

the volume (Theorem 37 of [8]); in many cases this approach alsoamounts to

summing the volumes of the simplexes in a certain triangulation of the

polytope. The method in the present paper avoids triangulation of P or of its

boundary.

3
Several papers concern computing the volume of certain sets in IR , e.g.,

Lee and Requicha [15], [16], where more general three-dimensional sets are

considered, and Shoemaker and Huang [26]. In Speevak [27], a novel method

forcomputing volumes of certain pyramids in is given.

The method presented in this paper is based essentially on Gram’s

relation. (See Shephard [25].) If the polytope P is simple then

Gram’s relation provides a method by which one can write the volume of P as

a sum of numbers
, one for each vertex v of P. These numbers are easy

to compute, so the difficulty of the procedure is mainly that of enumerating

the vertices of P.

Recent results on the complexity of volume estimation appear in Barany

and Fliredi [3], Elekes [9], and Lovasz [17]. These results pertain to convex

sets C not necessarily given as an intersection of halfspaces, but rather
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determined by certain oracles, e.g. , by an oracle that, when given x €

either assures us that x e C , or gives us a halfspace H containing C but not

X .

The problem considered in this paper has been shown to be #P-hard (Dyer

and Frieze [7]) even when restricted to polytopes for which the coefficient

matrix of the defining system of inequalities is totally unimodular. (For

a treatment of " #P-hardness" see Valiant [19].)

Also in [7], Dyer and Frieze pose the following problem. Let A be an

m X n matrix of rational numbers, and let b be a column vector of m rational

numbers. Let P = {x e : A x ^ b} , be a bounded polytope so that the

volume of P will necessarily be a rational number. Define the size (as in

[24]) of the rational number r = a/b (reduced) to be one more than the total

number of digits in the binary representations of the integers a and b, and

the size of the pair (A,b) to be m(n+l) more than the sum of the sizes of the

entries of A and b. Is the size of the volume of P polynomially bounded in

the size of (A,b)? We shall see that the answer to this question is "no."

For background material concerning convex polytopes, systems of linear

inequalities, linear programming, and valuations on convex polytopes see [11],

[28], [10], and [23],
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2. Statement of the Main Result , and a Result from Combinatorial Integral

Geometry . We identify with the vector space of real column vectors of

..n
length n. Let P £ R be an n-dimenslonal polyhedron. Then P is the set

of solutions to a finite system of linear inequalities; say, P = {x € R :

a. X ^ b.
1 1

for 1 ^ i ^ m} , where the a. 's are in R and the b. 's
1 1

are in R. Given such a representation, the function r. (x) = b. - a. x is111
called the i^^residual . The polyhedron P is the set on which all the

residuals are nonnegative. The i^^ inequality constraint is said to be

binding at x if r^ (x) = 0. The result upon which our algorithm for volume

computation rests is as follows:

THEOREM. Suppose P = { x € r'^ : r. (x) = b. - a^ x 2: 0 for i = 1 m}.—
1 11

Suppose further that P _is bounded and that for each vertex v of P the number

of indices i such that r^(v) = 0 is n. _In particular . P is a simple polytope .

Suppose c € r'^ and d € R and such that the function f(x) = c^ x + d is

nonconstant on each edge of P. Given a vertex v of P let

N =
V n! d y. ... ‘y

v"! n

where , if the indices of the constraints which are binding at v are i^

and i . then y y are such that
n 1 n

c = a ..... 3.^ a. ,

1 n

and 5^ is the absolute value of the determinant of the n x n matrix whose

columns are a a.
1

,
1

1 n
Then the volume of P is

vol (P) = ^
v,a vertex

N

of P

This theorem follows modulo the computation of the numbers N from the

corollary at the end of this section. The numbers are computed (under the
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unnecessary but convenient restriction that P be contained in the nonnegative

orthant in IR^ and have the orgin as a vertex) in section 3.

We next describe a combinatorial form of Gram’ s relation.

If V is a vertex of P , we wish to describe the "forward cone" of P

at V (with respect to f). Let i^ and i^ be the indices of the n

constraints which are binding at v. Then v is the unique solution to the

system of equations

(1) a^^ X = b^ (j = 1 , . . . , n).

J J

It follows that {a. , . . .

,

a. > forms a basis for and there is a

n

unique representation
^

^ terms of the basis. From this

j=l

n
we have f(x) = f(v) - ^ ^

.

r^ (x) . Omitting any one of the constraints in

J = 1
J

(1) leads to a system whose solution set is a line through v. Each edge of

P containing v spans such a line. Since f is assumed to be nonconstant on

each of the edges, it follows that o , for j = 1 , . . . , n . We denote

by e(v) the number of indices j such that > 0 . This is also the

number of edges of P containing v on which f decreases in the direction

leaving v . The forward cone at v is the set F(v) of solutions x to the

system of inequalities:

r . (x) < 0 if 7 . > 0 ,

J

r . (x) ^ 0 if 3r . < 0 .

1 • J
J

The closure of this set is a simplicial cone with apex v
, and on this cone
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f achieves its minimum value at v.

For a set K c
, C(K) denotes the characteristic function of K

that for X €

C(K) (x)

1 if X 6 K

0 if X ^ K .

so

If G is a face of the convex polyhedron P , we denote by (G,P) the

cone generated by P at G : y (G, P) = {g + a (y - x) : x, g € G, y e P, and

a ^ 0 }.

LEMMA.

P, and

as above .

For P c [R

n

f(x) = c X +

we have

(-1)®'''* c

a simple . n-dimensional polyhedron . v a vertex of

d a function which is nonconstant on each edge of P,

(v)
dim(G),

Ch-CG.P)

G

where the summation extends over all faces G of P such that f attains

its maximum value on G at v.

Proof. Let P be given (as above) as the set of solutions to the

inequalities r^(x) ^0 (i = 1 , ... , m) , and suppose that i^

and i are the indices of the constraints which are binding at v. The 2^
n

subsets of [n] = {1, 2, .... n> are in bijective correspondence with the

faces of P containing v by the rule S G (S) = P n {x € : r. (x) = 0

for j e S}, for S c [n]. The function G is order-reversing: If S c T

then G(T) £ g(S). We have dim (G(S)) = n-|S|. Also, for S Q [n]

,

y (G(S),P) = {x € R^ : r. (x) 2:

1 .

0 for j e S>, so that X e y (G(S), P) if

and only if S S x
X

where T
X

= {j € [n] : r^ (x) ^ 0>.
1 .

J

n
Suppose we have, as above, f(x) f (v) -I

J=1

r. (x).
1 .

J

Let
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W = {j e [n] ; y. < 0>. Then f assumes its maximum value on G(W) at v,

and W is the (unique) smallest such set. For S £ [n] , f assumes its

maximum value on G(S) at v if and only if S 2 W.

For X € , the value of the right-hand side of the equation in the

lemma is

Y (- 1 )

S£[n]
S2W

dim (G(S))
9'(G(S), P) (x)

[
(-i)"-|sN.

(-1)" if T * U

W£S£T
otherwise.

Clearly this is (-1)^^'^^ C(F(v)) (x) .

In the proof of the theorem below we use a version of Gram’s relation.

(See Shephard [25]. The following is a strengthened version which can be

proven using methods of [25]. Gram’s relation is also known as the

Brianchon-Gram Theorem. See McMullen [18]. )

GRAM’S RELATION. Let P ^ a convex polyhedron having at least one vertex .

Then

^
(_^)dim(G)

c^y(G,P)

G, a bounded
face of P

C(P).

THEOREM. Suppose P and f are as in the statement of the lemma.

Additionally , assume that f attains its minimum value on P. Then

c(p)=5; (-!)«<'''

V, a vertex
of P

C F(v)
V J
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Proof. We have

V, a vertex
of P

I
V, a vertex
of P

G, a face of P

on which f attains
its maximum value at v

C(P).

G, a bounded
face of P

The first of these equalities follows from the lemma; the second, from the

fact that a face G on which f is bounded above and below must be bounded,

since f is not constant on any edge of G; and the third, from the above

version of Gram’s relation.

This theorem is useful, as we shall see, not only in volume computation

but also in the computation of any valuation which can easily be evaluated on

simplexes. We recall some fundamental facts concerning valuations, beginning

with the definition. (See also [14].)

Let 9- be a family of sets in which is closed under finite

intersections and unions, and suppose 4> € S'. A valuation on ^ is a

function V :
9^ -= R such that (i) V (0) = 0 and (ii) for each pair of sets

A, B e 9:, the identity V(A) + V(B) = V(A n B) + V(A u B) holds.

Any valuation V on 9^ induces a homomorphism V : ^ (9^) R, where

^(9^) is the additive group generated by the characteristic functions C(F)

of elements F of 9^, satisfying V(F) = V C(F) for each F € 9-.

Here we are interested in examples in which is a collection of sets

which are finite unions of polyhedra. For such a collection, given a
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function k which is integrable on each element of 3^, we can define a

valuation by integration: V(F) = k d /i . (In this case, the induced

homomorphism V : IR is given by V (g) = g k d p . ) For the

R

collection of finite unions of convex polytopes, taking k = 1, we get V(F) =

vol (F), the ordinary volume of F.

We can now state the following corollary to the theorem.

COROLLARY. IX V any valuation defined on a family ^ which includes

the polyhedron P of the theorem and all of the forward cones F(v) for

vertices v of P, then

(p) = [
(- 1 )

e(v)
F(v)

V, a vertex
of P

Proof. If V : -> R is the induced homomorphism then we have

V(P) = V C(P)] = V
1

c[f(v)’
1 ) V, a vertex ^

of P

[
V

''

C

''

F(v) = [
(-1)®*''’ V F(v)

a vertex V, a vertex ^ >

of P of P

Of course, the volume function fails to satisfy the hypothesis of this

corollary because it is not defined on the (unbounded) forward cones.

We may still use the corollary to evaluate vol(P), if P is a polytope, as

follows. Let t be a real number large enough so that the halfspace

= -jx € R^ : f(x) ^ tj- contains P. Let the valuation V be defined by

V(F) vol F n
, for any set F which is the finite union of convex

9



polyhedra whose intersections with are bounded. Now the corollary

applies. The left-hand side of the equation is the volume of P. On the

right-hand side is a sum involving volumes of sets of the form F(v) n ^

which are simplexes.

As an example, consider the case in which P is the unit n-cube,
nt N

P = = ^1 ^n
€ [R : 0 ^ x^ 1 for 1 ^ i ^ n^ .

Let f (x) = ^1 Xj * ... + r X , where the 3r.’sn n 1

Let V = where e. = 0 or 1 for
1

one of the 2^ vertices of . The forward cone

set of the system

X. 2: 0
1

if e .
= 0 ,

1

X. > 1
1

if e. = 1 ,

1

and F(v) n is the set which also satisfies the additional inequality

r. X. t
1 1

The volume of this set is easily seen to be

1_ (t-f(v))^^

n! 3^1 . . r if t > f (v)
1 z n

0 if t ^ f(v)

By the corollary, the volume of n is

|v| (t-f(v))

ri ... 3^^

11

where if y € IR , y_^
= max {0, y} , and

^
i=l

This formula has already been observed, in [4] . Dyer and Frieze [7] show

that computing vol (C^ ^ #P-hard.
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As another example we compute the volumes of certain projective images of

the unit n-cube.

n X
For u e [R let T denote the projective transformation T (x) = =— .

u r- u
,

T
1+u X

For u,v e one has T (T (x)) = T (x), and in particular T is the inverse
u V u+v -u

of T
u

Let = {[x^...x ] ^ € R^ : x. ^ 0 ( i = 1 , . .
.

, n) >

,

the nonnegative
+ 1 n 1

orthant. If u > 0 then T is defined on R^ . If x e R^ and y = T (x) then
u + + u

0 :£ X = T (y) =
-u . t

1-u y

Clearly

T (R ) = {y € R : u y < 1}
u + -^ + ^

This set coincides, up to the boundary, with the simplex

conv {0, V ,...,v }, where

v^^^ = [0 , . . .
, ^ , • . . . 0] ,

i

the nonzero entry being in the i~ coordinate.

We wish to apply the corollary with the valuation V(P) = vol T^(P)
.

which is defined on polyhedra P c [R^ ^ to compute V(C^) . To this end we

determine V(F(v)) for vertices v = [e, . . .

c

of C^. We have
1 n

T^(F(v)) = {y e r’^ : T_^(y) € F(v)}

= {y ; y^
^ 0 if = 0,

T
y. + u y ^ 1 if c. = 1

1 1

T
and u y < 1

}

This set coincides, up to its boundary, with the simplex

(n)
conv {T (v)

, v^^^ , v^^^
u

} ,

where the v^^^’s are as before, and of course

T (v) =
u

'1

.
T

*- 1+u V 1
T

1+u V

11



Upon observing that the determinant of the matrix

1
1

,
T

1+u V

]_
u
n

£
n

1+u V

1

1

is —
,
we deduce that

u, . . .

u

( 1+u v)
1 n

V(F(v)) = vol T (F(v)) = ^
n! u, . . .

u

( 1+u v)
1 n

By the corollary we have

vcc") = ij —^— yn! u, . . . u L
1 n V

3. Description of the Method ,

to compute be given as

P = -|xe[R^: x^O, A X ^

1
T

1+u V

Let the polytope P whose volume we are

where A is an m x n matrix and b is a column vector in having

nonnegative entries. We assume that P is a simple polytope and that each

vertex v of P satisfies with equality exactly n of the m + n

inequalities defining P. In particular, considering that the origin in

is a vertex of P, the entries of b are positive. (This assumption can be

discarded by making use of standard lexicographic techniques for handling

primal degeneracy in linear programming. See [10].) Additionally, we assume

the availability of a function f(x) = c^ x + d which is constant on no edge

of P.

For i = 1 , ... , n , let r^(x) be the residual associated with the

12



nonnegativity constraint; r^(x) is the value of the i^^ coordinate

of X . For i=n+l, ... ,m+n, let r^(x) be the residual

associated with the inequality involving the (i - n)^^ row of A.

We can combine the above data to formulate a linear programming problem:

maximize c^ x + d subject to the constraints

Ax b ,

( 2 )

X ^ 0 .

The polytope P is the feasible region for (2) .

Our assumption that each vertex of P satisfies exactly n of the defining

inequalities with equality is the assumption of primal nondegeneracy for

(2) . If we consider simplex tableaux to be equivalent if they differ only

by row permutation then primal nondegeneracy implies a bijective

correspondence between the set of (equivalence classes of) simplex tableaux

and the vertex set of P.

The vertex enumerating algorithms of [2], [20], [21] use simplex pivoting

methods to obtain all of the basic feasible tableaux for (2). See also [6]

and [22] for a surveys of vertex-finding algorithms. Our method uses such an

algorithm.

For each tableau, the numbers e(v) and vol

determined, where v is the vertex of P corresponding to the tableau. The

summation in the corollary is computed using this information.

We describe how to glean the needed information from the simplex

tableaux.

F( V ) n
I

are

13



After introducing slack variables for (2), we have
-.t ^

X + d subject to the constraintsmaximize

(3)

X ^ 0 ,

where now x € . The intial tableau is
“

A I b

t
0-c d

corresponding to the origin in a vertex of P. The basic sequence for

T is (n+ l,n+2, ... ,n+m). The basic sequence for a tableau is the

sequence of indices of basic columns in the order they would appear in the

identity matrix.

Suppose V is a vertex of P. Suppose r^^ (v) > 0 for

J

J = 1 , ... , m , and k, < . . . < k , so that k. , ... , k
1 m 1 m

are the indices of the residuals of the nonbinding constraints. Let T be a

tableau cooresponding to v. The entries in its basic sequence

(

IS,
1 m

are the numbers k^ ( j = 1 , . .
. , m) in some order. The

tableau T is of the form

T =
M

J r ... r
1 2 m+n

where

M(i, ^.)
J

fl if i = J

|0 if 1 ^ J
•

14



For us what is important is that y. = 0 if and only if i = 13 . for some
m+n ^

^
j , and f(x) = d - ^

r^(x) . Thus the bottom row of T gives the
i = l

coefficients of the objective function when written in terms of the residuals

of the constraints which are binding at v . The number e(v) is the number

of positive y^’s . By definition the forward cone F(v) is the set of

solutions X to

r^ (x) <0 if > 0 ,

r. (x) ^0 if y. < 0 .

1 1

Given a real number t, let -{x € R : f(x) < t ^ , as before. We must

compute the volume of the set F(v) ^ . This set is given by the

inequalities

r. (x) < 0
1

if oA

(4) r. (x) i 0
1

if
!-'•

A O

m+n

y y. r. (x

i^i
^ ^

) ^ d - t

This set is nonempty if t > d

Let ^2 < i be the indices of the residuals for the
n

constraints which are binding at v , so that y. ^ 0 for 1 < J :< n .

The volume of the set of y

t

n
€ R satisfying

15



^ 0 for j = 1 , . . . , n ,

(5)

,[ ki.l y,
- t - 3

j=i

IS i (t-d)"
n! |y. ... 3^.

I

1 n

,
when t ^ d . The linear transformation mapping

f '

X e to y = - EgnU r . (x) ... . , -sgn r . (x)
1
n

maps the simplex

which is the closure of the set of solutions to (4) onto the solution set to

(5). We denote by 5 the absolute value of the determinant of this
V

transformation. The volume of the solution set to (4) is then

i i (t-d)’^
.

n! 5
I
r . . .

. r
. I

‘

V ' 1 . 1 '

0 if t d

(6) vol F(v) n = .

1 1 (t-d)"^ if t > d

n!
V.

6
1
r. . .

. y.
1V ' 1 , 1 '

1 n

The number 5 in (6) is easily seen to be the determinant of the
V

basis matrix-the matrix consisting of the columns of [A : I] having indices

basic in T and occurring in the order dictated by the basic sequence for T.

It is easy to calculate 5^ if we have arrived at T from T by a sequence of

pivots. It is the product of the pivot elements.

16



Finally, upon multiplying both sides of (6) by (-1)^^'^^
, we get

(7) vol|F(v) n H, (-1)^ i_ (t-d)^
n!

V 1, ^i

if t d

if t > d .

Summing these numbers for each vertex v yields the volume of the set

P A H, . If t exceeds the optimal value of the linear programming problem
t

(2) then the sum is the volume of P.

Observe that for large t the functions of t that we sum are

polynomials, and the sum is a constant - the volume of P . It follows that

the sum is a constant polynomial. Evaluation at t = 0 yields the volume of

P as the sum of the numbers

( 8 ) N = —
V n! 6 y.

V 1,

4. ^ Example and Comments . In the figures are exhibited the feasible

tableaux for the problem

maximize ^1 ^2

^1 ^2
< 2

^2
< 4

3Xi ^ 2x2 < 15

Xi , x^ > 0

subject to

along with a graph indicating the corresponding vertices. Our computations,

as shown, indicate that the area of the polygon is 38/3 (which, in this

example, can easily be checked by other means).

The main contributor to the complexity of this method is the possibly

high number of vertices of the polytope P. A polytope of dimension n

17



determined by m + n linear inequality constraints may have as many as

vertices. See [19].

1 n+1
I

'

m+n - [_—

J

m

in+2,^m+n - [—

J

A problem which provides a complication in higher dimensions is that of

round-off error. The method requires summing a lot of numbers, some positive

and some negative. These numbers, compared to the volume of P, can be quite

large in magnitude, so that there can be considerable loss of significance.

One (perhaps costly) way around this is the use of "exact arithmetic." To

illustrate the extent to which this approach can indeed be costly and to

provide a negative solution to the problem of Dyer and Frieze [7] mentioned in

the Introduction, we consider again the example at the end of section 2, with

t

2‘^
u = [11 1

[2’ 4’ • • •
’ n

The projective image T^(C ) is the polytope which consists of those

y e which satisfy the 2n inequalities

y. ^0, (forl^i^n),
.7 1

.

" h ^n ^n
^

2 ^1
" 1 ^2 -n ^n

^

1 1

2^1 " 4^2 " 1 + —
2^-

y - 1 •

n

Its volume is

n! u, . . . u
1 n

E
V, a

(- 1 )

|v|

, t
1+U V

n^+3n

n! E
(- 1 )

t/(N)-1

N=2
n

N

vertex of C

where t)(N) is the number of I’s in the binary expansion of N. Suppose this

number, written as a reduced fraction, is a/b. Note that each prime N such

that 2^ < N < 2^^^ divides b, so a very crude lower bound on b is 2^
,
where

18



k is the number of such primes N . It follows by the prime number theorem

([12] ,
page 9) that k is not bounded by a polynomial in n. We see that the

number of digits in the binary expansion of b is not bounded by a polynomial

in n.

In the presence of primal degeneracy there is no longer a bijective

correspondence between the set of vertices of P and the set of equivalence

classes of feasible tableaux. In this case it is nevertheless possible to

find the desired volume by performing the summation, but now over the set of

tableaux for which a lexicographic positivity condition holds.

The requirement that the objective function f be nonconstant on the

edges of P also provides a complication. This requirement is fulfilled by

f(x) = c^x, where c = [1,M, for M a sufficiently large

number. If A and b have rational entries then one can show (using the methods

of [24], section 11.3) that M can be chosen to be of size polynomial in the

size of (A,b).
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